
How to Integrate ROS Components
into the Embedded Devices

Hideki Takase
(Kyoto University / JST PREST)

The 19th International Forum on
Embedded MPSoC and Multicore

Contents
• ROS: How to accelerate the development
-Background & Motivation
-History of robot software framework
-Features of ROS
-ROS 2: next-generation development platform

• mROS: How to integrate embedded devices
-Motivation & Our Strategy
-Overview & Structure
-Current Status & Case Study

• Conclusion & Announcement

2

Background & Motivation
• Characteristics of robot systems
-Combination of a number of technology fields

(controlling, processing, automation, planning, AI, etc,,,)
- Interaction to the physical world

üMixed processing of real-time and non real-time
üHuge amount of data to be operated

-Limited computational resources and power

3

Unified design framework would accelerate
development of robot systems

Robot Software Framework
• To accelerate the development,,,
-enhancing the reusability of modules
-managing inter-process and inter-system easily

4

CORBA-based architecture
http://openrtm.org/

Transport-neutral communication
http://www.yarp.it/

Mainly for kinematics and dynamics
http://www.orocos.org/

de-fact around the world!!
http://www.ros.org/

http://openrtm.org/
http://www.yarp.it/
http://www.orocos.org/
http://www.ros.org/

ROS History

5

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

1st commit to SourceForge (Nov. 2007)
https://sourceforge.net/p/ros/code/1/log/?path=

http://www.ros.org/news/
2017/11/ros-turns-10.html

ROS 1.0 released

http://wiki.ros.org

ROS 2 Alpha released

https://sourceforge.net/p/ros/code/1/log/?path=
http://www.ros.org/news/2017/11/ros-turns-10.html
http://wiki.ros.org/

What is ROS?

6

http://www.ros.org/about-ros/

ROS is not just framework,
but design platform for robots!!

• Plumbing: pub/sub messaging infrastructure
• Tools: configuring, debugging, visualizing, etc.
• Capabilities: broad collection of libraries
• Ecosystem: world-wide powerful community

http://www.ros.org/about-ros/

Plumbing
• Publish / Subscribe messaging infrastructure

üROS is not OS, but middle-ware (on Ubuntu)
-Asynchronous comm. between nodes via topics
-Master (roscore) manages the registration of node

üservice (synchronous comm.) is also supported

7

:
:

:

:

�������

Plumbing
• Benefits
- If a process/node crashes, it can be restarted
-A functionality can be exchanged by replacing node

8

:
:

:

:

�������

Tools
• catkin_tools: CLI of config. & build system
• rqt: Qt-based debugging framework
• gazebo: 3D physical simulation tool
• rviz: visualization tool
-and roslaunch, rosbag, tf, etc.,,,

9

Capabilities
• ROS package:
-a broad collection of libraries that implement

useful robot functionality
ümobility, manipulation, perception, etc.,,,

-2,000+ packages are available as open-source
• Advantages of package:
-enhance reusability of resources
- realize component based development approach

• Officially supported languages:
C++, Python, LISP

-Others: C#, Java, Lua, Go, ruby, etc.,,,

10

Ecosystem
• On-line community
-ROS Wiki: documentation & download site
-ROS Answers: Q&A community site
-ROS Discourse: announcement of release & events

• Off-line community
-ROSCon: international developers conference
-SIG meetups, tutorial workshop, local events, etc.,,,

11

http://wiki.ros.org/
https://answers.ros.org/questions/
https://discourse.ros.org/

ROS around the world!!

12

http://download.ros.org/downloads/
metrics/metrics-report-2018-07.pdf

http://download.ros.org/downloads/metrics/metrics-report-2018-07.pdf

ROS Robots

13https://robots.ros.org

Aerial Marine

Component Sensor

Ground Manipulator

Motor

https://robots.ros.org/

Transition of Use Case
• Single robot
• Workstation-class
computational resource

• No real-time control
• Excellent connectivity
of network quality

• Application in research

14

• Multiple robots
• Demands for small
embedded platforms

• For real-time control
• Non-ideal networks
(loss and/or delay)

• Production environment

Development of has been started
from the ground up!!

New Features of ROS 2
• DDS (Data Distribution Service)
-ROS-like pub/sub transport protocol

üNo master is needed for managing comm.
-Technical credibility by OMG standard specification

15

https://speakerdeck.com/youtalk/dds?slide=12

https://speakerdeck.com/youtalk/dds?slide=12

New Features of ROS 2
• QoS control
- reliability, history policy,

and durability for each topic
• Lifecycle state machine
-4 states with error handling
-State change is notified by topic

• Multi platform support
-Ubuntu, macOS, Windows
- (experimental) bare-metal / RTOS with tiny DDS

• And much more improvement,,,
16

Contents
• ROS: How to accelerate the development
-Background & Motivation
-History of robot software framework
-Features of ROS
-ROS 2: next-generation development platform

• mROS: How to integrate embedded devices
-Motivation & Our Strategy
-Overview & Structure
-Current Status & Case Study

• Conclusion & Announcement

17

Motivation

18

• Enormous amount of
OSS packages
• Linux/Ubuntu is needed

• multi-platform support
including embedded
• Not so many packages

• Embedded technology would contribute to
power consumption & real-time capability

• There is no compatibility between ROS 1 and ROS 2

Our Strategy

19

lightweight runtime environment
that enables to integrate

embedded technology onto ROS 1 world

• Enormous amount of
OSS packages
• Linux/Ubuntu is needed

• power-efficient
• real-time capability
• Severe resource restriction

Overview of mROS

20

-

-

-

-

-

-

 -
- -

���
����

Contributions of mROS
ü Portability of ROS 1 packages to embedded devices
ü Enhancement of power saving & real-time performance

for edge nodes on distributed robot systems

Requirements & Goals
• Target: mid-range class embedded devices
-RTOS and TCP/IP stack can be operated
-Linux kernel cannot be operated

üNo high-end control unit (e.g., MMU)
• Requirements for performance

ümROS as edge devices on distributed systems
-Publishing data: QVGA image from camera

-> approximately 512 KB of data at 100 ms interval
-Subscribed data: the control instruction data set

-> less than 1 KB in 1 ms
• Memory size for 10 MB at most

21

Supported Function
• data publication
• data subscription
• procedure call between the
ROS master and other nodes

• acceptance of procedure call
from nodes to the master

22

:
:
:

:
:
:

) - (
(-

41 36 2 5 2

Software Structure
• mROS tasks can be designed by ROS APIs
-Device programing can be realized with mbed lib.
-Multi-tasks (multi-nodes) execution can be

realized by TOPPERS programming model

23

&/

A E

A

 A
C C

 A
A

)(
& A

Tasks for mROS comm. lib.

24

%inter-task communication
%TCP/IP communication

#!� �"�!���
�!#�������

��
!#������

��������
�
	��	�

����
�
	�
��

����
��������

��
�#� ����

�����!"�

�����������$���

��!"���$���

#!� �"�!���
��#�������

mROS comm. lib

TCPROS XMLRPC

Shared memory and
data queue for task

communication

SUB & XML_SLV
TASKs are

periodically executed

Execution Flow of advertise()
• Registration of publication task (node)

25

user task
XML_MAS

TASK

(1)
embedded device

advertise() ROS master
(2)

(3)

PUB
TASK

(4)
�XML-RPC
�TCPROS
�inter-task comm.

XML_SLV
TASK

ROS
sub node

(5) (6)

(7) data queue

(1) initialization request of topic name via data queue
and assignment of node ID

(2) generation of XML header and sending it to master
(3) response of the registration result

Execution Flow of advertise()
• Registration of publication task (node)

26

user task
XML_MAS

TASK

(1)
embedded device

advertise() ROS master
(2)

(3)

PUB
TASK

(4)
�XML-RPC
�TCPROS
�inter-task comm.

XML_SLV
TASK

ROS
sub node

(5) (6)

(7) data queue

(4) notification of message ID and generation of TCP socket
(5) notification of port number when request of topic occurs
(6) sending arrival request of topic
(7) establishment of TCPROS connection

Execution Flow of publish()
• Publication of data to external subscription node

27

(1) writing the publication data in shared memory
(2) generation of message ID and sending it
(3) receiving and encoding message ID
(4) searching TCP socket, and publishing data to sub node

user task

PUB

TASK

(1)

(2)

(3)

(4) ROS

sub node

embedded device

publish()

�XML-RPC

�TCPROS

�inter-task comm.shared mem.

Execution Flow of subscribe()
• Registration of subscription task (node)

28

(1) notification of the initialization request
(2) generation of XML header and sending it to master
(3) response of the registration result and

sending URI of external pub node

SUB TASK(1)

(3)

(7)
ROS

pub node(8)

(4)(5)(6)
embedded device

user task

subscribe()
XML_MAS

TASK

(2)
ROS master

(9)
(8) �XML-RPC

�TCPROS
�inter-task comm.

(10)

Execution Flow of subscribe()
• Registration of subscription task (node)

29

(4) notification of initialization request of user task
(5) sending the request for subscription
(6) notification of the port number of the external pub node
(7) generation of TCPROS connection header for

subscription request

SUB TASK(1)

(3)

(7)
ROS

pub node(8)

(4)(5)(6)
embedded device

user task

subscribe()
XML_MAS

TASK

(2)
ROS master

(9)
(8) �XML-RPC

�TCPROS
�inter-task comm.

(10)

Execution Flow of subscribe()
• Subscription of topic

30

(8) activation of callback in SUB TASK
(9) writing the return value of callback
(10) getting and using the return value from shared memory

SUB TASK(1)

(3)

(7)
ROS

pub node(8)

(4)(5)(6)
embedded device

user task

subscribe()
XML_MAS

TASK

(2)
ROS master

(9)
(8) �XML-RPC

�TCPROS
�inter-task comm.

(10)

Intra-Device Communication
• Communication via shared memory

31

(1) notification of initialization request for subscription
(2) generation of XML header and sending it to master
(3) response of the registration result and sending URI of pub task
(4) notification of registration result and

appending the node info. to node list where pub task is

SUB
TASK

(1)

(3)

(4)
user task 1

subscribe()
XML_MAS

TASK

(2)
ROS master

(6)

�XML-RPC
�intra-device comm.

(5)

user task 2

publish()

(7)

(8)

Intra-Device Communication
• Communication via shared memory

32

(5) writing data in the shared memory by publish()
(6) sending the generated message ID
(7) reading topic data from shared memory
(8) activation of callback

SUB
TASK

(1)

(3)

(4)
user task 1

subscribe()
XML_MAS

TASK

(2)
ROS master

(6)

�XML-RPC
�intra-device comm.

(5)

user task 2

publish()

(7)

(8)

Implementation Setup
• Target: Renesas GR-PEACH
-400 MHz Cortex-A9 processor
-8 MB Flash memory
-Arduino compatible pins
-CMOS camera shield
- IDE: Atollic TrueSTUDIO

• Host: NECʼs LAVIE HybrydZERO
-Ubuntu14.04 LTS
-ROS indigo
- Intel Core i7 2.4 GHz, 16 GB memory

33

Evaluation: publish()
• less than 16 KB of data can be published in 1 ms
• 512 KB of data can be published in less than 100 ms

34

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

1 16 256 4096

ex
ec

ut
io

n
tim

e
[m

s]

data size [B]

0
10
20
30
40
50
60
70
80
90

100

16K 32K 64K 128K 256K 512K

ex
ec

ut
io

n
tim

e
[m

s]

data size [B]

Evaluation: subscribe()
• Less than 2 KB can be executed in less than 0.1 ms
-Large data to subscribe is not assumed

35

0.0

0.5

1.0

1.5

2.0

2.5

1 8 64 512 4096

ex
ec

ut
io

n
tim

e
[m

s]

data size [B]

0
10
20
30
40
50
60
70
80
90

100

4K 8K 16K 32K 64K 128K 256K
ex

ec
ut

io
n

tim
e

[m
s]

data size [B]

Evaluation: Intra-Device
• Data publication to the same device is much smaller
regardless of the data size

36

0

2

4

6

8

10

0 50K 100K 150K 200K 250K 300K

data size [B]

To the same device To the host device

Evaluation: Memory Size

• Approximately 2.6 MB
- sufficiently lightweight for GR-PEACH
- It is possible to make the size smaller by adjusting

the size of the shared memory by design choice

37

text data bss total
kernel 99,676 0 16,408 116,084

mbed lib. 264,477 52,940 45,711 363,128
mROS lib. 57,950 28 2,097,310 2,155,288

total 422,103 52,968 2,159,429 2,634,500

Case Study:
edge detection from camera

38

• Operate part of system on the edge
• 2 types of configuration are implemented
- “image_converter” node is ported on mROS

camera image
_converter fast mask

/im
ag
e_
ra
w

/in
pu
t_
da
ta

/o
ut
pu
t_
da
ta

/im
ag
e_
fa
st_

pcedge host

camera image
_converter fast mask

/in
pu
t_
da
ta

/o
ut
pu
t_
da
ta

/im
ag
e_
fa
st_

pcedge host

/image_raw

Case Study:
edge detection from camera

39

1

1 !
1 1

!

1
1

1 1 1 !
1 1

Conclusion
• ROS: Robot Operating System

• mROS: a light-weight runtime environment
-Portability of ROS 1 packages to embedded devices
-Enhancement of power saving & real-time perf.

• Future directions
-Support for synchronous communication of ROS
-Quantitative Evaluation of power savings
- Integration of FPGA/MPSoC environment?

40. / - .

Acknowledgements & References
• Acknowledgement: The part of this work was supported by JST,

PRESTO Grant Number JPMJPR18M8, Japan.

• Yutaka Kondo: Getting Started with ROS 2 / DDS, ROS Japan User
Group #27, Dec 2018. https://speakerdeck.com/youtalk/dds

• Geoffrey Biggs: Introduction of Next-Generation Robot Framework
ROS 2 (in Japanese), 20th Summer Workshop on Embedded System
Technologies (SWEST20), Aug 2018.
https://swest.toppers.jp/SWEST20/program/s2a.html#s2

• Tully Foote: ROS Community Metrics Report, Jul 2018.
http://download.ros.org/downloads/metrics/metrics-report-2018-07.pdf

• Dirk Thomas, Mikael Arguedas: The ROS 2 Vision -For Advancing the
Future of Robotics Development-, ROSCon 2017, Sep 2017.
https://roscon.ros.org/2017/presentations/ROSCon%202017%20ROS2%
20Vision.pdf

41

https://speakerdeck.com/youtalk/dds
https://swest.toppers.jp/SWEST20/program/s2a.html
http://download.ros.org/downloads/metrics/metrics-report-2018-07.pdf
https://roscon.ros.org/2017/presentations/ROSCon%202017%20ROS2%20Vision.pdf

Acknowledgements & References
• ROS Wiki: http://wiki.ros.org
• ROS Answers: https://answers.ros.org
• ROS Discourse: https://discourse.ros.org

• Hideki Takase, Tomoya Mori, et al.: Work-in-Progress: Design Concept
of a Lightweight Runtime Environment for Robot Software Components
Onto Embedded Devices, Proc. of EMSOFT, Oct 2018.
https://ieeexplore.ieee.org/document/8537199

• Yasuhiro Nitta, Sou Tamura, Hideki Takase: A Study on Introducing
FPGA to ROS Based Autonomous Driving System, Proc. of FPT, Dec 2018.

• Takeshi Ohkawa, Yutaro Ishida, Yuhei Sugata, Hakaru Tamukoh:
ROS-Compliant FPGA Component Technology - FPGA installation into
ROS, ROSCon 2017, Sep 2017.
https://roscon.ros.org/2017/presentations/ROSCon%202017%20
ROS%20Compliant%20FPGA.pdf

42

http://wiki.ros.org/
https://answers.ros.org/
https://discourse.ros.org/
https://ieeexplore.ieee.org/document/8537199
https://roscon.ros.org/2017/presentations/ROSCon%202017%20ROS%20Compliant%20FPGA.pdf

